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Abstract—This paper makes a case for accelerating lattice-based post quantum cryptography

with memristor-based crossbars. We map the polynomial multiplications in a representative

algorithm, SABER, and show that analog dot-products can yield 1.7−32.5× performance and

energy efficiency improvement, compared to recent hardware proposals. We introduce several

additional techniques to address the bottlenecks in this initial design. First, we show that

software techniques used in SABER, that are effective on CPU platforms, are unhelpful in

crossbars. Relying on simpler algorithms further improves our efficiency by 1.3−3.6×. Second,

modular arithmetic in SABER offers an opportunity to drop most significant bits, enabling

techniques that exploit a few variable precision ADCs, and yielding up to 1.8× higher efficiency.

Third, to further reduce ADC pressure, we propose a simple analog Shift-and-Add technique,

demonstrating a 1.3−6.3× improvement. Overall, XCRYPT achieve 3−15× higher efficiency over

the initial design and highlight the importance of algorithm-accelerator co-design.
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THE recent emergence of several quantum

computing systems has increased the likelihood

that integer factorization and discrete logarithm

will be tractable in the near future, thus render-

ing several modern-day cryptographic primitives

obsolete. This has spurred interest in alternative

cryptographic primitives, termed post-quantum

cryptography (PQC).

Asymmetric key encryption schemes like

RSA/ECC, used in the handshake protocols of

modern cloud-based infrastructures, are vulnera-

ble to quantum attacks; these may be replaced by

their PQC counterparts that have been proposed

recently. Popular PQC schemes rely on large

matrix and vector operations that place a signifi-

cant burden on the hardware. Recent implemen-

tations on GPUs/ASICs report latencies of tens to

hundreds of micro-seconds. Classic cryptographic

functions can be typically executed in micro-

seconds on modern hardware; for instance Intel

QuickAssist technology executes RSA decrypt

operation in 5us. The metrics for PQC therefore

fall well short of the demands of modern deploy-

ments, affecting applications like cloud services

and secure transactions.

In this work1, we demonstrate a compute-in-

memory based accelerator for one such scheme,

SABER [1]. We explore a promising technol-

ogy – analog computing in resistive memories

(memristors) – as the foundation for new archi-

tectures that efficiently execute PQC algorithms.

While memristors have been used before to im-

plement computations in deep neural networks,

we show that SABER offers new opportunities to

further improve the efficiency of this approach,

e.g., the use of modulo operations that (unlike

DNNs) allows us to drop most significant bits

in computations. We first design a basic accel-

erator targeting client and server applications of

SABER in the handshake protocol, leveraging

prior best practices [2]. We demonstrate software

techniques like decomposing polynomial degree

and smart scheduling to increase sharing of ana-

log to digital converters (ADCs), that improves

energy efficiency by 2.4-2.7× and computational

efficiency by 4.7×, relative to our baseline. We

propose a novel technique to perform write-free

1An extended version of the paper is available at
https://arxiv.org/abs/2302.00095.

in-analog shift-and-add operations using cross-

bars, allowing us to trade-off cell programming

with ADC complexity. Overall, XCRYPT (Xbar

based accelerator for post-quantum CRYPTogra-

phy) achieves server deployment with decryption

latency of 0.08 us and client deployment with

encryption latency of 4 us, with an overall chip

area of just 0.04 and 0.3 mm2 respectively.

BACKGROUND

SABER. SABER [1] is a round 3 lattice-

based finalist among the NIST solicited PQC

algorithms. Certain computational problems on

lattices, an infinite set of periodic points in an

n-dimensional Euclidean space, are conjectured

to have no probabilistic polynomial time algo-

rithms, which form the basis for lattice-based

cryptography. We focus on the public key en-

cryption (PKE) aspect of SABER since it is em-

ployed in the handshake protocol. PKE consists

of 3 algorithms - key generation, encryption,

and decryption. KeyGen determines a matrix A

of polynomials using a pseudo-random number

generator. A secret vector ~s of polynomials is

generated by sampling from a distribution. Public

key consists of the matrix seed and the rounded

product ~b = AT~s. Encryption generates a new

secret ~s′, and adds the message m (a polynomial

with coefficients ∈ {0,1}) to the inner product

of public key ~b and ~s′, forming the first part of

ciphertext. The second part hides the encrypting

secret by rounding the product A~s′. Decryption

uses the secret key ~s to extract the message

encoded in the ciphertext.

Overall, SABER performs 24 PolyMults, 14

PolyModulo, and 8 PolyRounding opera-

tions – each PolyMult does 2562 integer

products and Modulo/Rounding are applied

per coefficient. SABER adds a few constants

in its calculations so that rounding can be

replaced with simple bit shifts.

In lattice-based cryptography, PolyMult plays

a key role in the overall performance. In our

experiments, we observed that PolyMult kernels

consume > 90% of the execution time. When

implementing PolyMult, the Number Theoretic

Transform (NTT) algorithm has the asymptoti-

cally fastest time complexity of O(n logn), but
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it requires prime modulo, which in turn leads

to non-trivial complexity for modulo operations.

SABER instead chooses a power-of-two modulo,

which speeds up the modulo (by simply drop-

ping the most significant bits). Since NTT is

not an option, SABER uses the Toom-Cook-4

algorithm to reduce each degree-256 to 7 degree-

64 PolyMults, and then further reduces them to

degree-32 using the Karatsuba algorithm once.

This choice (along with AVX2 support) brings

the contribution of PolyMult to 57%, and SABER

outperforms implementations (like Kyber) that

employ a faster NTT-based multiplier. SABER

demonstrates computations in tens of micro-

seconds using AVX2 support [1]. However, mod-

ern web-services and secure transactions demand

an order of magnitude lower latencies. A direct

replacement with SABER would introduce delays

in connection establishments and hence, user ser-

vice. Given its favorable properties in terms of

speed and lower hardware/ciphertext complexity,

we choose SABER as the target for our hardware

acceleration. Many of the techniques introduced

in this work are also applicable to other lattice-

based schemes that are used heavily for PQC,

homomorphic encryption, etc.

MEMRISTOR CROSSBAR ARRAYS. In the

past decade, industry and academia have made

significant investments in resistive memory tech-

nologies, that use cell resistance value to store in-

formation. Resistive memory arrays have several

advantages – very high density, non-volatility,

competitive read latency/energy, and ability to

perform analog computations in-memory. Such

processing-in-memory technologies have the po-

tential for high parallelism and low data move-

ment.

A memristor array is implemented as a cross-

bar – a grid of cells. Sandwiched between the X-

and Y-dimension wires (wordlines and bitlines)

are the resistive cells. When voltages are applied

across two wordlines, current is injected into each

bitline, proportional to the conductance of each

cell in those rows. Thus, the current in each bit-

line is an analog representation of the dot-product

of two vectors – the voltage vector applied to

the wordlines and the conductance vector pre-

programmed into a column of cells. Further, the

wordline voltage is broadcast to all the columns;

each column performs an independent parallel

dot-product on the same voltage vector, but using

a different conductance vector. The basic Kir-

choff’s Law equation is being exploited to design

an analog vector-matrix multiplication circuit that

yields a vector of output bitline currents in a

single step.

Recent works like ISAAC [2] have employed

these analog resistive circuits as the central com-

ponent in accelerators for DNNs, which can tol-

erate small noise in computations. Typically, a

major power/area contributor to such a design

is the analog-to-digital signal converter (ADC).

ADCs consume significant power that grows ex-

ponentially with resolution. Managing ADC reso-

lution and power is a key challenge in exploiting

the capabilities of this emerging technology. This

paper builds on the insight from these prior archi-

tectures and explores how the specific properties

of cryptographic applications can better exploit

this emerging technology.

SABER ON MEMRISTOR ARRAYS

We first adapt the ISAAC architecture [2]

to create a strong memristor crossbar base-

line that can execute PolyMult. Next, we

make the case that SABER’s PolyMult al-

gorithm (Toom Cook-4 + Karatsuba) is not

always well suited for crossbars, and identify

alternative multiplication algorithms. Then,

we show techniques, enabled by SABER’s

power-of-2 modulo, that reduce the over-

heads of ADCs. In the next section, we

extend this design to allow shift-and-adds in

analog, further lowering ADC requirements.

Overall, we make the case that amenability

to acceleration with emerging technology

should be a strong consideration as cryp-

tographic primitives are standardized.

At its core, almost all lattice-based candidate

schemes in NIST PQC perform modular poly-

nomial multiplication. Modular here means that

pout = p1∗ p2, where pout , p1, p2 ∈Zq[x]/(x
n+1).

Modular PolyMult is often represented as vector-

matrix multiplication. We use a methodology very

similar to that of ISAAC to map the required

computations to crossbars. Since secret key ~s
remains constant for much of the server’s runtime,

we designate ~s as the operand to be encoded in

crossbar cells. We need 72 128×128 1-bit cross-
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Figure 1: XCRYPT-SchoolBook or X-SB archi-

tecture, with encryption/decryption tiles.

bars to store key ~s. A tile in our design (shown in

Figure 1) has multiple crossbars and can perform

3 PolyMults, as required by a vector-vector mul-

tiplication. Using ISAAC’s flip-encoding scheme,

each column produces a 6-bit current. We use an

area-efficient ADC that can convert samples at

a frequency of 1 GSps. To further reduce area

overhead, we share 1 ADC across 8 columns of

a crossbar, which results in crossbar read cycle

time of 8 ns. We designate this architecture as

XCRYPT-SchoolBook or X-SB because it uses the

basic algorithm for PolyMult.

As illustrated in Figure 1, we design 2 dif-

ferent tiles - encryption and decryption. This is

because we target two different deployments -

a cloud server and a client device. In a typical

handshake protocol, the server and client establish

a private key using asymmetric key encryption

(like SABER in the post-quantum world). During

the protocol, client encrypts using the server’s

public key while the server decrypts using its

secret key. Hence, we design XCRYPT encryp-

tion/decryption tiles for client/server respectively.

Programming the cells is expensive, in terms

of energy, performance, and endurance. Typically,

memristors-based cells have a budget of 1012

writes before the cells malfunction. Since the

server only periodically changes its private key

(for freshness), the number of writes are low

enough to sustain a reasonable lifetime. For in-

stance, considering a conservative assumption of

a private key update every second, the acceler-

ator lifetime exceeds 30K years. On the client

side, every new connection demands a new write.

However, the typical number of connections es-

tablished by a client is small. Even with 105

connection setups per day, the client accelerator

lifetime will exceed 27K years.

METHODOLOGY. To makes it convenient

Table 1: XCRYPT-Schoolbook (X-SB) parame-

ters, at 32nm.

Component Count Power (uW) Area (um2)

XBar (128x128) 1 300 25

DAC 1bit 128 3.9 0.16

S+H 6bit 128 0.007 0.029

ADC 6bit 16 945 435

ADC 7bit 1 1365 628.33

Total (1 array) 123.13 7737.557

X-SB = 1 Encryption +

1 Decryption Tile = 2 x
(48 arrays)+(IR+OR+SA)

11.92 mW 0.743 mm2

to discuss XCRYPT design choices with support-

ing results, we state our methodology here. We

leverage many of the primitives introduced in the

ISAAC architecture [2] and adopt an evaluation

methodology very similar to that work, with

parameters updated as below. The energy and

area model for crossbar arrays, including Shift-

and-Add Crossbars, is based on Hu et al. [3].

The memristor cell model is derived from [5],

with 25 ns write latency and 0.1 pJ/cell/bit write

energy, and NVSim is used to extract array level

numbers. Read latency is determined by the ADC

readout as RC delay of the crossbar is typically

sub-ns [3]. The read energy of an memristor cell

is four orders of magnitude lower than write en-

ergy. Area and energy for shift-and-add, sample-

and-hold, and 1-bit DAC circuits are adapted from

ISAAC [2]. We have considered an energy and

area efficient adaptive ADC that can handle one

giga-samples per second. ADC components have

been scaled appropriately to arrive at different

precision models. Detailed parameters of our ini-

tial design (X-SB, described in next subsection)

are listed in Table 1. Note that we propose various

versions of XCRYPT with varying XBar/ADC

sizes, leading to various parameters. We also

model CASCADE components based on parame-

ters mentioned by Chou et al. [4]. We modify the

SABER code to execute various XCRYPT design

features. We consider the SABER variant that has

post-quantum security level similar to AES-192.

We consider 2 key metrics to evaluate XCRYPT

efficiency: (i) Computational Efficiency (CE), the

number of 1-bit plaintext/ciphertext operations

per second per mm2 of area (Gbits/s×mm2), and

(ii) Energy Efficiency (EE), the number of 1-bit

plaintext/ciphertext operations per 1J of energy

(Gbits/J).
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Figure 2: CE and EE for SABER on memristor

crossbars, evaluating various polynomial multipli-

cation algorithms.

EXISTING WORKS. Efforts are already un-

derway to implement PQC algorithms in hard-

ware. Most of the efforts have attributed hard-

ware overheads to multiplication units. The CPU

implementations have reported latencies in 10-

20 us, running on an Intel Haswell machine at

3.1 GHz, with AVX2 support [1]. Zhu et al. [6]

use an 8-level hierarchical Karatsuba framework

for PolyMult and a task scheduler that reduces

resource utilization by up to 90%. Their post-

layout chip is approximately the same size as our

proposed designs, which gives a fair comparison.

While our basic X-SB design outperforms most

existing works, state-of-the-art ASIC [6] achieves

2.4× better energy efficiency. In this paper, we

then introduce additional techniques that enable

XCRYPT to outperform [6] by 2 orders of mag-

nitude.

IMPACT OF POLYMULT ALGORITHM. In

this sub-section, we explore different multipli-

cation algorithms to identify the implementa-

tion that is most amenable to crossbar accel-

eration. Similar to matrix multiplication, poly-

nomial multiplication also benefits from vari-

ous lower complexity algorithms. Figure 2 quan-

tifies CE and EE for these algorithms. We

start with the standard O(n2)-complexity School-

book algorithm, designated X-SB, for multiplying

256-degree polynomials. Karatsuba’s algorithm

(O(n1.58)-complexity) breaks down a 256-degree

multiplication to 3 128-degree PolyMults, reduc-

ing the number of required 128×128 crossbars

from 32 to 24, labeled X-K2. This proportionally

decreases ADC and crossbar write energy. En-

cryption also has a lower CE than decryption as

it requires more crossbars, has more input cycles,

Figure 3: (a) Number of bits that contribute to the

final coefficient. (b) Reordering computations in

Xbars to enable sharing of high precision ADCs.

and requires a long initial crossbar programming

step (90% of end-to-end encryption latency). We

experiment with further reducing the polynomial

degree to 128 using Karatsuba, labeled X-K4. We

see that X-K4 results in lower improvements

ToomCook-4 (O(n1.4)-complexity) reduces a

256-degree PolyMult to 7 64-degree PolyMults.

While ToomCook-4 is asymptotically faster than

K2, it creates more polynomials that require in-

creased ADC samples and crossbar requirements,

which explains the worse behavior for X-TC4,

relative to X-K2, for decryption. However, TC4

performs well during encryption as the benefits

from a smaller crossbar (lower write latency and

energy) outweigh the higher crossbar count re-

quirements. Software implementations of SABER

use ToomCook-4 + Karatsuba-2 (labeled as X-

TC4K2 in the figures) to do 21 32-degree Poly-

Mults, which performs best for encryption due

to its small crossbar write latency/energy. For en-

cryption, X-TC4K2 improves CE and EE over X-

SB by 3.6× and 1.6×, respectively. Lowering de-

gree beyond 128 doesn’t result in better efficiency

for decryption where no writes happen.

Thus, the ideal SABER algorithm on a cross-

bar accelerator varies, and we choose X-

K2 for decryption and X-TC4K2 for encryp-

tion, for the rest of the paper. This analy-

sis highlights the importance of algorithm-

accelerator co-design.

USING MODULO TO REDUCE ADC OVER-

HEADS The X-K2 implementation of SABER on

memristor crossbars is primarily constrained by

ADC overhead. ADC consumes 90% of the area,

and 78% of the energy during decryption. Similar
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ADC overheads are also reported by previous

studies for DNN applications. In the 128×128

crossbar, since the computations are spread across

cells in a row and across cycles, the 6-bit ADC

results have to be aggregated after appropriate

shifts. SABER’s parameters define that the coef-

ficients of the output polynomial must go through

modulo 210 or 213, which keeps the coefficients at

10 or 13 bits. Thus, given the modulo operation,

not all bits from all 6-bit ADC samples contribute

to the final output.

Unlike DNN computations, where most sig-

nificant bits carry the most information, most

significant bits in our computations are often

ineffectual.

For instance, all 6 bits from cycle 0’s Least Sig-

nificant Bit (LSB) column are needed as they add

to the LSB 6 bits of the output coefficient. How-

ever, the output of cycle 9’s LSB column is added

to the same coefficient after shifting left 9 times,

i.e., only the LSB of the sampled ADC value will

contribute to the final 10-bit result. In Figure 3(a),

we illustrate the number of relevant bits during

decryption. Each coefficient of secret ~s is 4 bits,

which is stored across 4 cells in a row, with

LSB stored in column 0. Therefore, the outputs

of 4 columns have to be added after appropriate

shifts. Furthermore, values across cycles are also

shifted-and-added. This is shown in Algorithm 1.

As seen from the figure, the number of bits and

hence, the ADC precision varies depending upon

the value of (cycle+column). For vector-vector

multiplications, we require full precision (6 bits)

only for (cycle+column) ≤ 4.

Algorithm 1: Pseudo-code for polyno-

mial multiplication, per coefficient, us-

ing crossbar

1 coeff = 0;

2 for(cycle=0; cycle<10; ++cycle)

3 for(column=0; column<4; ++column)

4 coeff +=

bitline value[cycle][column]≪(cycle+column);

5 coeff = (coeff) mod 210

We take advantage of this flexibility by re-

ordering computations in such a manner that

at any given cycle, at most 1 crossbar is pro-

ducing an output with maximum precision of

6.

This is illustrated in Figure 3(b), which depicts

the column 0 output precision requirements for

2 crossbars. Computations of the second crossbar

are reordered such that the 5th gets executed in

the 0th cycle. This staggering ensures that only

one crossbar produces a 6-bit output in a given

cycle. By sharing 2 ADCs, one 6-bit and the other

5-bit among the crossbars, we lower the ADC

overheads relative to the baseline with two 6-

bit ADCs. Each ADC handles half the workload.

This concept can be further applied to lower

energy while slightly increasing area. The 5-bit

ADC workload can be split across a 5-bit ADC

and a 4-bit ADC. The 4-bit ADC handles nearly

90% of this split workload, thus saving energy.

The area overhead of an extra ADC is reduced

by sharing the 5-bit ADC across 10 crossbars

(since the 5-bit ADC is assigned a small fraction

of the conversions). Since ADC overheads grow

exponentially with its precision, this technique of

leveraging shared, lower precision ADCs allows

us to improve EE by 1.8× and CE by 1.5× over

X-K2 in decryption. Since this technique doesn’t

reduce the number of crossbar writes, benefits in

encryption are lower - 1.7× in EE and 1.08× in

CE.

Shift-and-Add Crossbars (SACs)
PolyMult with crossbars generates many in-

termediate ADC readout values, that are later

shifted-and-added to obtain the final output poly-

nomial. For instance, each PolyMult in decryption

generates 4 values per cycle, for 10 cycles, which

are appropriately shifted-and-added to obtain one

output coefficient value (Algorithm 1). Interme-

diate analog value readouts are expensive since

they are done using ADCs.

In this section, we explore the possibility

of performing the shift-and-add operation in

analog to delay the ADC readout.

We achieve this functionality by forwarding the

output currents of bitlines in a crossbar to a spe-

cialized crossbar whose cells are pre-programmed

to hold powers of 2, resulting in a shifted addition

of inputs, and fewer ADC readouts.
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EXISTING IN-ANALOG SHIFT-AND-ADD IM-

PLEMENTATION. CASCADE [4] proposed in-

analog shift-and-add of intermediate values by

writing the output of a crossbar’s columns to

another Buffer crossbar. In a given cycle, the col-

umn outputs are written in adjacent cells of a row,

while values across cycles are written to different

rows with appropriate shifts. A simple readout of

the Buffer crossbar performs shift-and-add of all

intermediate values, and delays the ADC readout

to a single final value. However, CASCADE

assumes a lower memristor cell write energy than

that reported in recent literature. While multiple

write drivers allow parallel cell programming,

the write latency is expected to be about 25 ns.

Memristor cells also have 4 orders of magnitude

higher write energy (0.1 pJ/cell/bit) than read

energy [5]. We next discuss an alternative, more

efficient analog shift-and-add technique.

WRITE-FREE IN-ANALOG SHIFT-AND-ADD

USING SACS. We propose a novel technique

to perform shift-and-add in analog. We introduce

Shift-and-Add Crossbars (SACs) - tiny single col-

umn crossbars whose cells are pre-programmed to

hold successive powers of 2. The intuition behind

SAC is that given an input vector, when passed

through SAC, individual values are multiplied by

cell values and aggregated. In practice, up to 6-

bit precision memristor cells have been demon-

strated. Therefore, SACs, with highest multiplier

factor of 1≪5, can only add inputs with a maxi-

mum of 5 shifts. However, this can be overcome

with hierarchical deployment of SACs.

We first start by using SACs within a cycle.

Since the secret ~s is written to 4 1-bit cells in a

row, the output of 4 columns must be added with

appropriate shifts, every cycle. In the baseline im-

plementation, this addition happens in digital, af-

ter ADC readout. We propose using a single SAC

to perform these shift-and-adds, as demonstrated

in Figure 4a. In order to feed a crossbar’s output

current to SAC’s DAC, it must be first converted

to a proportional voltage signal, which is usually

done using TransImpedance Amplifiers (TIAs).

We use a fast (11 ns sense+transfer time) TIA

circuit proposed by CASCADE [4]. Note that

SAC’s output is the shift-and-add result of 4 6-

bit values, resulting in a 10-bit value. Therefore, a

more expensive 10-bit precision ADC is required.

MSBLSB

TIAs

G= 1<<0

G= 1<<1

G= 1<<2

G= 1<<3

(LSB<<0)+(..<<1)+(..<<2)+(MSB<<3)Shift-and-Add result

Shift-and-Add 

Crossbar (SAC)

ADC

S&H

(a) Shift-and-Add Crossbars (SACs)

(b) Hierarchical-SAC

Figure 4: In-analog Shift-and-Add across outputs

of (a) a single crossbar, (b) different crossbars.

However, by delaying ADC readout, it converts

4× fewer samples and allows more sharing within

the crossbar. Moreover, as the cycles proceed,

fewer bits from the accumulated value contribute

to the final output coefficient, as described in

Algorithm 1. This enables flexibility to increase

ADC sharing, as only a single 10-bit sample is

generated across the whole dot product. On the

other hand, in a non-SAC implementation, 4× 6-

bit samples are generated during many cycles, as

seen from Figure 3. SAC significantly lowers the

number of samples, increasing the effectiveness

of the ADC sharing and smart scheduling de-

scribed in the previous section. We refer to this

design as SAC-Basic.

SAC-Basic is a synergistic technique that

exploits known analog circuits (like TIA),
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the flexibility offered by SABER’s mod-

ulo operation, and resource sharing through

smart scheduling on crossbars.

IN-ANALOG ACCUMULATION ACROSS CY-

CLES. In the previous subsection, we demon-

strated accumulating column outputs within a

cycle in analog, delaying the ADC readout. Since

input values are also streamed 1-bit per cycle,

outputs across different cycles must be shifted-

and-added once in digital. Since our design does

not write the cycle output to a crossbar (like

CASCADE), it cannot readily accumulate across

cycles. However, we can overcome this roadblock

by doing multiple cycles in parallel.

Accumulate across cycles: SAC requires inputs

to be fed simultaneously across different rows in

order to shift-and-add them. Therefore, to add

outputs from 2 cycles, their computations need

to be done in parallel. This requires 2× com-

pute/storage resources but reduces ADC samples

by 2× – a reasonable trade-off as ADC accounts

for a majority of the energy/area.

We label the per-crossbar single-cycle SAC as

Round1-SAC. Unlike SAC-Basic, Round1-SAC’s

outputs are redirected to another SAC using TIA.

This SAC is shared across multiple crossbars that

contribute to the same output coefficient, and is

termed as Round2-SAC. This 2-cycle accumulated

column value is finally read out with an ADC at

the end of Round2-SAC, labeled SAC-2x. While

SAC-2x reduces ADC overheads, it increases the

number of crossbars that run in parallel, in turn

increasing the overall crossbar write costs. We

perform a design space exploration evaluating this

trade-off while increasing the number of cycles

that are accumulated in-analog. At the extreme

end, SAC-All accumulates all columns over all

cycles per output polynomial coefficient (similar

to CASCADE) and hence generates only 1 ADC

sample per output coefficient.

Hierarchical SACs: Since the memristor cell has

a max resolution of 6 bits, larger computations

are performed hierarchically, thus extending to

Round3, 4 SACs, as shown in Figure 4b.

RESULTS. SAC-Basic Results: We compare

our basic XCRYPT design with ADC Sharing

techniques, CASCADE with similar techniques,

and our novel design with SAC adding col-

umn values (SAC-Basic) within a cycle in Fig-

ure 5. Cycle time is determined by the TIA’s

sense+transfer time (=11ns). In a cycle, inputs are

streamed to the first crossbar, sensed by TIA, and

then sent as inputs to SAC. In the second cycle,

outputs are streamed through SAC, producing the

final value, which is sampled using ADC. Due to

increase in the number of cycles and cycle time,

end to end latency increases, relative to basic

XCRYPT. However, by delaying ADC readout,

SAC-Basic achieves 2.1× (2.3× for encryption)

higher CE and 1.1× (1.1×) higher EE, over

X-K2-ADCShare (X-TC4K2-ADCShare). On the

other hand, CASCADE (C-K2-ADCShare) per-

forms worse than the basic design, highlighting

the overheads of performing crossbar writes every

cycle.

Parallel SAC results: We also compare various

SAC-* designs in Figure 5. As we increase the

parallelism to reduce ADC samples, the bot-

tleneck shifts from ADCs to crossbar writes.

We demonstrate this using energy breakdown

results in Figure 6. From SAC-Basic to SAC-

All, the bottleneck shifts from ADC (77% of

total energy) to crossbar writes (83% of total

energy). The benefits from fewer ADC samples

cannot outweigh the energy overheads of more

crossbar writes, which is why SAC-All’s EE de-

creased by 66% from X-TC4K2-ADCShare, for

encryption. Meanwhile, since decryption doesn’t

need to write to the crossbar (after being written

once on boot), increasing the level of parallelism

increases CE and EE. We also observe that the use

of these circuit techniques changes the software

algorithm that is most amenable to acceleration,

e.g., Schoolbook out-performs Karatsuba in some

cases.

Overall, the best decryption design (X-SB-

SAC-All) yields 4.5× and 6.3× increase in

CE and EE, respectively, over X-K2-ADCShare.

For encryption, these improvements for X-

TC4K2-SAC-2x are 2.5× and 1.3× over X-

TC4K2-ADCShare. Compared to state-of-the-art

ASIC [6], XCRYPT shows 3-51× higher efficien-

cies with 2.6-16× speedup. A single tile can per-

form 0.7M/22.7M encryptions/decryptions per

second with a 0.09/0.07 mm2 area budget.

Due to non-ideal device behaviors and cir-

cuit issues, analog computations are vulnerable

to errors. We simulated with cell’s non-ideality

variance ranging up to 10%, and observed no
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(a) Encryption (b) Decryption

Figure 5: Comparison of XCRYPT designs. X-, C- represents XCRYPT, CASCADE respectively.

(a) Encryption (b) Decryption

Figure 6: Energy Breakdown of various XCRYPT designs. X-, C- represents XCRYPT, CASCADE

respectively.

change in failure probability till 6% variance.

Beyond that, failures in decryption are detected

with ECC/CRC and fixed with re-transmissions.

For commercial reality, such circuits will have to

show high yield, reliability and low cost in the

manufacturing processes.

CONCLUSION

This work evaluates the use of memristor

crossbars for accelerating lattice-based PQC. We

show that even a simple implementation of

SABER, a PQC candidate for NIST Round-3,

performs up to 3.4× faster than existing hardware

proposals for SABER. By exploiting SABER’s al-

gorithmic properties, e.g., its power-of-2 modulo

operations, we can further boost the accelerator’s

efficiency. We identify polynomial multiplication

as the key operation in lattice-based schemes, and

show that crossbar-based designs might not bene-

fit from some of the existing software techniques

for efficient multiplication. We propose SABER-

specific variable precision ADCs, which, along

with computation reordering, allow high levels

of ADC sharing. We observe that ADC sharing

improves computational and energy efficiency by

1.3−1.8×. To further reduce ADC overheads, we

propose simple analog Shift-and-Add techniques,

which offer an additional 1.3−6.3× increase in

efficiency.
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