Session 11: Performance Analysis and Simulation

ICPE *19, April 7-11, 2019, Mumbai, India

Memory Centric Characterization and Analysis of SPEC
CPU2017 Suite

Sarabjeet Singh
sarabjeet.singh@ashoka.edu.in
Ashoka University

ABSTRACT

In this paper, we provide a comprehensive, memory-centric charac-
terization of the SPEC CPU2017 benchmark suite, using a number of
mechanisms including dynamic binary instrumentation, measure-
ments on native hardware using hardware performance counters
and operating system based tools.

We present a number of results including working set sizes, mem-
ory capacity consumption and memory bandwidth utilization of
various workloads. Our experiments reveal that, on the x86_64 ISA,
SPEC CPU2017 workloads execute a significant number of mem-
ory related instructions, with approximately 50% of all dynamic
instructions requiring memory accesses. We also show that there is
a large variation in the memory footprint and bandwidth utilization
profiles of the entire suite, with some benchmarks using as much as
16 GB of main memory and up to 2.3 GB/s of memory bandwidth.

We perform instruction distribution analysis of the benchmark
suite and find that the average instruction count for SPEC CPU2017
workloads is an order of magnitude higher than SPEC CPU2006
ones. In addition, we also find that FP benchmarks of the suite have
higher compute requirements: on average, FP workloads execute
three times the number of compute operations as compared to INT
workloads.

KEYWORDS

SPEC CPU2017; Memory Characterization; Performance Analysis;
Benchmarks

ACM Reference Format:

Sarabjeet Singh and Manu Awasthi. 2019. Memory Centric Characterization
and Analysis of SPEC CPU2017 Suite. In Tenth ACM/SPEC International
Conference on Performance Engineering (ICPE ’19), April 7-11, 2019, Mumbai,
India. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3297663.
3310311

1 INTRODUCTION

The study of computer architecture and system design depends on
the availability of workloads that are able to faithfully represent
contemporary and future applications of a given vertical. In the CPU
domain, Standard Performance Evaluation Corporation (SPEC) has
been releasing the SPEC CPU suite for close to three decades now.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE ’19, April 7-11, 2019, Mumbai, India

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6239-9/19/04...$15.00
https://doi.org/10.1145/3297663.3310311

285

Manu Awasthi
manu.awasthi@ashoka.edu.in
Ashoka University

These benchmarks have become the standard for any researcher or
commercial entity wishing to benchmark their architecture or for
exploring new designs.

The latest offering of SPEC CPU suite, SPEC CPU2017, was re-
leased in June 2017 [8]. SPEC CPU2017 retains a number of bench-
marks from previous iterations but has also added many new ones
to reflect the changing nature of applications. Some recent stud-
ies [21, 24] have already started characterizing the behavior of
SPEC CPU2017 applications, looking for potential optimizations to
system architectures.

In recent years the memory hierarchy, from the caches, all the
way to main memory, has become a first class citizen of computer
system design. The last decade has seen a renewed interest in the
architectural design space exploration of main memory, including
novel additions to the existing interfaces and architecture (JEDEC,
DDR3, DDR4, DDR5) [4, 13, 22, 25]. Not only this, exploration of
emerging memory technologies like Phase Change Memory, MRAM
etc., to find their space in the memory hierarchy has also been
carried out [17, 20]. Researchers have started exploring emerging
memory technologies to be used in both cache and main memory
architectures [6, 19, 27, 28].

SPEC 2006 [14] played an important role in these explorations.
Innovations to cache and memory hierarchies have been explored
using these workloads by either (i) selecting individual workloads
from the suite, or (ii) creating multi-programmed workload mixes,
with varying memory behavior. This selection was made possible
by already available studies characterizing the memory behavior
patterns SPEC 2006 suite [16].

However, there is no existing work that characterizes the mem-
ory hierarchy behavior of the SPEC 2017 suite. In this paper, we
bridge this gap in the literature by making the following important
contributions:

(1) Across the SPEC CPU2017 suite, we provide a holistic char-
acterization of the dynamic instruction execution profiles
of different workloads, for both Rate and Speed categories,
and observe that most workloads have a large number of
memory related operations: close to 50% on average across
the suite.

We provide a detailed analysis of the memory behavior of
various benchmarks, using a combination of dynamic in-
strumentation tools (Pin/Pintools), hardware performance
counters and operating system level tools. We report the
overall working set size, memory bandwidth consumption,
and memory resident working set sizes of various workloads.

The rest of the paper is organized as follows. Section 2 gives a back-
ground of CPU2017 benchmarks. Section 3 proposes the methodol-
ogy used to characterize the benchmarks. Section 4 and 5 analyze
the benchmarks at an instruction and memory level, respectively.

https://doi.org/10.1145/3297663.3310311
https://doi.org/10.1145/3297663.3310311
https://doi.org/10.1145/3297663.3310311

Session 11: Performance Analysis and Simulation

ICPE *19, April 7-11, 2019, Mumbai, India

Table 1: SPEC CPU2017 Benchmarks

Bencl k Domain Inputs
perlbench Perl Interpreter Interprets SpamAssassin, MHonArc, and an internal script
gee GNU C Compiler C source code file compiled with different optimizations
mcf Route Planning Solves large-scale minimum cost flow problem
omnetpp Discrete Event Simulation Simulates a 10 Gb Ethernet network
xalancbmk XML to HTML Conversion XML documents to HTML, text, and other XML types
X264 Video Compression Compresses portions of Blender Open Movie Project’s "Big Buck Bunny"
deepsjeng Artificial Intelligence Plays Chess variants employing alpha-beta tree search
leela Artificial Intelligence Computer Go featuring Monte Carlo tree search
exchange2 Artificial Intelligence Recursively solves 27 9x9 Sudoku puzzles
X2 General Data Compression Tar archive, database of ClamAV signatures and a file with text and image data
bwaves Explosion Modeling Simulates blast waves in 3D
cactuBSSN Physics: Relativity Uses BSSN formulation of Einstein equation and employs finite differencing in space
namd Molecular Dynamics 92224 atom simulation of Apolipoprotein A-I
parest Biomedical Imaging 3D reconstruction of interior of a body using multiple 2D observations
povray Ray Tracing Renders a 2560x2048 pixel image of a chess board with pieces
Ibm Fluid Dynamics Simulates flow of an incompressible fluid in 3D
wrf Weather Forecasting Simulates the January 2000 North American Blizzard
blender 3D Rendering and Animation Simulates reduced version of the Weybec Crazy Glue shot 3 data set to image
camé Atmosphere Modeling Atmospheric Component of the NCAR Earth System
pop2 Wide-scale Ocean Modeling Ocean Component of the NCAR Earth System
imagick Image Manipulation Performs various transformations on input images
nab Molecular Dynamics Models molecules with varying number of atoms
fotonik3d Computational Electromagnetics Employs finite-difference time-domain method for the Maxwell equations
roms Regional Ocean Modeling A free-surface, hydrostatic, primitive equation model

Table 2: System Configuration

Model 40-core Intel Xeon E5-2698 v4

CPU Frequency 2.2GHz

L1i cache 8-way, 32 KB

L1d cache 8-way, 32 KB

L2 cache 8-way, 256 KB

L3 cache Shared 20-way, 50 MB
Cache line size 64 Bytes
Main Memory 505 GB, DDR4

Dynamic Frequency Scaling On

Section 6 discusses the benchmarks which are newly added to the
SPEC CPU suite. Finally, we discuss the related works in Section 7
and conclude in Section 8.

2 SPEC CPU2017

SPEC CPU is a widely acknowledged suite of CPU benchmarks,
which is used for testing the performance of processor and memory
systems. A number of versions of SPEC have been released over
the years, with the latest version, released in 2017. CPU2017 [1]
considers state-of-the-art applications, organizing 43 benchmarks
into four different sub-suites: 10 rate integer (INTRate), 10 speed
integer (INTSpeed), 13 rate floating point (FPRate) and 10 speed
floating point (FPSpeed). The speed and rate suites vary in work-
load sizes, compile flags and run rules. SPECspeed measures the
performance by executing a single copy of each benchmark, with an
option of using multiple OpenMP threads, providing a measure of
single thread performance. This performance is typically measured
by metrics like IPC (Instructions Per Cycle). On the other hand,
SPECrate measures the throughput of an overall chip, possibly with
multiple cores, by running multiple, concurrent copies of the same
benchmark with OpenMP disabled. Most applications in CPU2017
have both rate and speed versions (denoted as 5nn.benchmark_r
and 6nn.benchmark_s, respectively), except for namd, parest, povray
and blender, which only have the rate versions, and pop2, which
only has a speed version. Similar to CPU2006, CPU2017 has been
provided with three input sets: test (to test if executables are func-
tional), train (input set built using feedback-directed optimization
and used for training binaries), and ref (timed data set of the real

applications, which is intended for a reportable run). CPU2017
benchmarks and their input sets are described in Table 1.

3 METHODOLOGY

To study the characteristics of CPU2017 workloads, we used a num-
ber of tools to analyse their behavior. The analysis in this paper
is based on the x86_64 instruction set. The binaries for the work-
loads were created using the default, SPEC recommended compiler
flags [2] (gcc —03), using compilation scripts which ship with
CPU 2017. Speed workloads are compiled to use 4 OpenMP threads,
while rate workloads were executed with a single instance of the
benchmark. We use Pin [23], a dynamic binary instrumentation
framework available for both 32 and 64 bit versions of the instruc-
tion set. Pin provides a rich set of APIs that can be used to study
various characteristics of program behavior at the Instruction Set
Architecture (ISA) level. These APIs are used to create a number of
tools, called Pintools, with each capable of carrying out a certain
type of analysis. In this study, we use the following pintools: Idst
(dynamic register/memory operand pattern profiler), opcodemix
(dynamic opcode mix profiler), and dcache (a functional simulator
of data cache).

For gathering information about workload behavior with real
hardware, we use perf, a performance analysis tool [9], and ps [3],
an OS utility to collect process level memory related data for various
workloads. Table 2 presents the configuration of the machine used
to run experiments for Pin-based, hardware-counter and system-
level experimentation and data collection. All the benchmarks were
executed till completion.

4 INSTRUCTION PROFILE

Analysis of the instruction profiles is a good mechanism for under-
standing a benchmark’s behavior and locating potential sources of
bottlenecks in hardware and software. To that end, we first study
the dynamic instruction count, instruction distribution and the
runtime performance of CPU 2017 workloads.

Dynamic Instruction Count: Figure 1 depicts the dynamic instruc-
tion count, a count of total number of instructions executed by the

286

ICPE *19, April 7-11, 2019, Mumbai, India

Session 11: Performance Analysis and Simulation

10000

1000

o
o
et

o
—

CPU2017 Average
FPSpeed. Average
FPRate Average
INTSpeed.Average
INTRate.Average

654 roms_s

649 fotonik3d_s

644 nab_s
638.imagick_s
628.pop2_s

621.wrf_s

619.1lbm_s

607 _cactuBSSMN_s
603.bwaves_s.bwaves_2
603 bwaves_s bwaves_1

554.roms_r

549 fotonik3d_r

544 .nab_r

538 imagick_r
527.camd_r

526 blender_r

521.wrf_r

519 Ibm_r

511_povray_r
510.parest_r

508 namd_r
507.cactuBSSN_r

503 bwaves_r bwaves_4
503.bwaves_rbwaves_3
503 bwaves_r bwaves_2
503.bwaves_rbwaves_1

657 xz_s.cld tar-1400-8
657.xz_s.cpu2006docs.tar-6643-4
648 exchange?_s

641 leela_s

631 deepsjeng_s

625.x264_s run_0500-1250
625.x264_s.run_000-1000_pass2
625.x264_s.run_000-1000_pass1
623 xalancbmk_s

620 omnetpp_s

605.mcf_s

602 gcc_s gec-pp.opts-05_-fl_24000
602.gcc_s.gee-pp.opts-05_-fl_1000
602.gcc_s.gee-pp.opts-05_-fipa-pta
600.peribench_s. splitmail
600.perlbench_s diffmail
600_perlbench_s checkspam

557 xz_rinput combined-250-7
557 xz_r.cpu2006docs tar-250-6e
557 xz_r cld tar-160-6
548.exchange2_r

541 leela_r

531.deepsjeng_r
525.x264_r.run_0500-1250

525 x264_rrun_000-1000_pass2
525.x264_rrun_000-1000_pass1
523 xalancbmk_r
520.omnetpp_r

505.mef_r
502.gcc_r.ref32.opts-03
502.gcc_r.ref32.opts-05

502 gce_rgee-smaller opts-03
502.gcc_rgee-pp.opts-02

502 gcc_rgec-pp.opts-03
500.peribench_r splitmail
500.perlbench_r.diffmail
500.peribench_r.checkspam

(eeas Bo| ‘suol|ig 00| u) suonanisu|

INTRate, INTSpeed, FPRate, FPSpeed)

Count. (Clusters from L to R:

ic Instruction

Dynam

Figure 1

MEM_R mmmm MEM_W === MEM_RW ==

[ALU_Only s

o o
(3]

100
80
60
40

654 roms_s

649 fotonik3d_s
644.nab_s
638.imagick_s
628.pop2_s

621.wrf_s

619.lbm_s
607.cactuBSSN_s
603.bwaves_s.bwaves_2
603.bwaves_s.bwaves_1

554.roms_r

549 fotonik3d_r

544 nab_r

538.imagick_r
527.camd_r
526.blender_r

521.wrf_r

519.lbm_r

511.povray_r
510.parest_r
508.namd_r
507.cactuBSSM_r
503.bwaves_r.bwaves_4
503.bwaves_r.bwaves 3
503.bwaves_rbwaves_2
503.bwaves_rbwaves_1

657 xz_s.cld tar-1400-8

657 xz_s.cpu2006docs tar-6643-4
648.exchange2_s

641 leela_s

631.deepsjeng_s
625.x264_s.run_0500-1250
625.x264_s.run_000-1000_pass2
625.x264_s.run_000-1000_pass1
623 xalanchmk_s

620.omnetpp_s

605.mcf_s
602.gcc_s.gee-pp-opts-05_-f_24000
602.gcc_s.gce-pp.opts-05_-fl_1000
602.gcc_s.gee-pp-opts-05_-fipa-pta
600.peribench_s. splitmail
600.peribench_s diffmail
600.peribench_s.checkspam

557 xz_rinput combined-250-7
557 xz_r cpu2006docs tar-250-6e
557 xz_r.cld tar-160-6

548 exchange?_r

541 leela_r

531.deepsjeng_r
525.x264_rrun_0500-1250

525 x264_rrun_000-1000_pass2
525.%264_rrun_000-1000_pass1
523 xalancbmk_r

520 omnetpp_r

505 mef_r
502.gcc_rref32.opts-03

502 gcc_rref32 opts-05

502 gcc_rgee-smaller opts-03
502.gcc_rgec-pp.opts-02

502 gce_rgee-pp.opts-03

500 peribench_r splitmail
500.peribench_r.diffmail
500.peribench_r.checkspam

(%) uonnguysig uoyonysu|

(a) Instruction Distribution

Others mmmm |

Jump
Load mmmm

INT Compare mmm
FP Compare

INT Move ™
FP Move mmmm

FP Multiply ==
FPAdd —— FP Subtract mm

INT Subtract

INTAdd o
INT Multiply mmm

654.roms_s
644.nab_s
628.pop2_s

621.wrf_s
619.Ibm_s

554.roms_r
544.nab_r
527 cam4_r
521 wrf_1

519.1bm_r

508.namd_r

657 xz_s

641.leela_s

625x264_s

605.mcf_s

602.gcc_s

557Xz r

541 leela_r

525.x264_r

505.mef_r
502.gec_r

(%) uonnquysig epoodo

649 fotonik3d_s

638.imagick_s

607.cactuBSSN_s

603.bwaves_s

549 fotonik3d_r

538.imagick_r

526 blender_r

511 _povray_r

510.parest_r

507.cactuBSSN_r

503.bwaves_r

648 exchange?_s

631.deepsjeng_s

623 xalancbmk_s

620.omnetpp_s

600.peribench_s

548 exchange?_r

531.deepsjeng_r

523 xalancbmk_r

520.omnetpp_r

500.perlbench_r

(b) Opcode Distribution

Instruction Profile. (Clusters from L to R: INTRate, INTSpeed, FPRate, FPSpeed)

Figure 2

than the SPEC CPU2006 [14, 16]. We also observe that the FPSpeed
suite has a much larger dynamic instruction count with respect

workload. Each benchmark is divided into its constituent work-

loads, depending on the input set. These results were collected

to others sub-suites, with bwaves_s executing as many as 382 tril-

using perf’s hardware event instructions. We note that the average
instruction count for SPEC CPU2017 workloads is 22.19 trillion

lion instructions. In general, Speed workloads have 1.5-10 X more
instructions than the corresponding Rate ones, and floating point

(1.4 quadrillion in total) which is an order of magnitude higher

287

Session 11: Performance Analysis and Simulation

ICPE *19, April 7-11, 2019, Mumbai, India

(@]
o 1
COOO0OCOO0OCONNNNNW o COOOCOOONNNMNNCW o o000 =2=2=2RNNW o OO0 =2MNNW o TTUT
SOSPRRPNRIOBROUTTNISPNNN SOORRNROCWINNS2DNN DOODIPO0-0NDr0O, OON0-0&db0r ddpgpnl
EUUGDFQGGBOXKN)‘QszXX 'DUULDCDFQEDXXKXQECDXX D’U’U’U’O:’UUEEU’D%‘:EE D’U’OEE'D%:B"E ;U-g’mul\!
CeDa099Q9 S OO G X NNN OO0 Q0 SONMNNE g x NN ssss00p 0 So o =0 58 5] 2B TE S
22E8888803 50538 2a8 101 S53888Q83 5000028 | 5388233783252 s323"98c83 F2%ae3
cool I I IgsrEropsonn ool Il 1 "ZSEERDO TN 2 ZF PRI maRQIZ30 <c<El pwNQImSn 2pay
0@ 22333 " 2alllL,2,2295 @@ ouwdgl| |l 8l 8oe sdosomTLi<T @ 5= @am® T, 5w =l D28 0
322888g38 EgSSoo 28T ZIJeca BgogprwugvIog oonnn-ll) Sz - wog wx T He 3800
33388850 P3ESSl3 ©FRS 535888 P2zzzg Bhy Ylhk-ba - LT e 2e=3¢8
I moao NN & h O = I I I R =1 NSE googz - oo Z o So=
=== P} [N (=] wnwBEBEZR o1 | T [=i=2 Q= =
aBhaPP300 -gloon o288 ©wwwE3FJF ool W 8L =221 £ 2| px82a
TSoDo0o0TT o @ g 3 oQaw - . ==t 2r SoSQ S5v 52 o B
=3 = =T o o o T oL Q < < < < =5
Y- -] $8Z 335ssS] S8 gags 38 3
B Y o000 == T » Q L LG T 0o N w
G238 002 5% 283) gggggg 335 @i 17000 @
v =84S 228N ¥ S5=2 SoON Iy RN
o @ (= TN 5 a1 o [SESRL 2
3 . 5o na g [[y =] >
Q 5 ® QP B B 3
@ o 0 = b=l oo B
[L o= K w w
SR & i = w 0 ¢
@ "’80 PN S
Foo
o
Figure 3: IPC. (Clusters from L to R: INTRate, INTSpeed, FPRate, FPSpeed)

(FP) workloads have 3-17 times than the integer (INT) workloads.
These observations point to the general increase in the complexity
of SPEC CPU workloads over the years.

Instruction Distribution: To better understand the distribution
of instructions that access memory, we present the instruction
distribution for workloads in Figure 2a. These experiments were
conducted using the Idst Pintool. Some benchmarks like perlbench,
x264, bwaves and a few others have multiple input files, which
are executed in succession to complete the run. We report the
results of each of these runs individually, leading to multiple bars
for a benchmark. To keep the discussion simple, we divide the
instructions into four broad categories: instructions that do not
refer memory (called ALU Only in the figure), instructions that
have one or more source operands in memory (called MEM_R),
instructions whose the destination operand is in memory (MEM_W),
and instructions whose source and destination operands are in
memory (MEM_RW)!.

This broad classification allows us to compare the types of in-
structions that are executed by each benchmark, and provides a
first order insight into the memory behavior of these benchmarks.
We make a few interesting observations. First, irrespective of the
input sets provided, the instruction distribution of a benchmark,
across these four buckets doesn’t change drastically. This is evi-
denced by the instruction distributions of all benchmarks that have
multiple input files (perlbench, gcc, x264 , xz, bwaves). Also, the
instruction distribution across the four buckets doesn’t change sig-
nificantly, irrespective of whether the speed or the rate version of
the benchmark is being examined.

Most benchmarks have a fairly balanced percentage of instruc-
tions that fall under either one of the MEM_R/ MEM_W/ MEM_RW
or the ALU_Only buckets. However, a few exceptions like exchange2
(AI) and pop2 (Ocean Modeling) exist where the contribution of
ALU_Only operations is fairly significant at 79.6% and 73.5%, re-
spectively. Floating point workloads also exhibit a lot of compute
activity, with ~60% ALU_Only instructions. However, on an aver-
age across the benchmark suite, SPECInt sub-suite exhibits executes

!Memory-to-memory instructions like movs in x86 are billed under the MEM_RW
bucket.

288

more memory related instructions than the SPECFP one. Our obser-
vations are consistent with the earlier versions of SPEC: CPU2006
and CPU2000 [16].

In order to get insights regarding the type of operations done by
these instructions, we profile the benchmarks to report instruction
level classification. Results, collected with the help of opcodemix
pintool, are presented in Figure 2b. The results for one benchmark
were averaged across all their input files. We observe that FP work-
loads, have approximately three times the number of arithmetic
operations than the INT workloads. In addition, we observe that
a majority of the memory operations in both integer and floating
point sub-suites are dominated by their respective move opera-
tions. We also observe that memory instructions for both Int and
FP benchmarks are predominantly read-only, which is consistent
with the high-level results obtained in Figure 2a.

Performance: We report the performance of the workloads in
terms of instruction per cycle (IPC) in Figure 3, on the system
outlined in Table 2. IPC is calculated as the ratio of the hardware
events instructions and cpu-cycles, obtained using perf. To account
for variations in execution time due to variables that cannot be con-
trolled, each experiment is run three times and the average values
are reported. Order of benchmark execution is shuffled between
repetitions to mitigate measurement bias. Rest of the experiments
in the paper are not repeated. We observe that FP workloads have
better IPC than INT ones. However, we do note that applications
that execute a significant number of memory related operations (e.g.
cactuBSSN_s, Ibm_s, xz_.cld.tar-1400-8 and mcf) and have larger
working sets, requiring more accesses to the memory hierarchy,
have lower IPCs.

5 MEMORY BEHAVIOR
5.1 Spatial Locality Behavior

Next, we observe the spatial locality characteristics of the workloads
by observing benchmarks using opcodemix Pintool. Opcodemix
helps analyse of the amount and size of data touched by any memory
operation that requires to traverse the cache and memory hierarchy.
We classify the instructions based on the amount of data that they

Session 11: Performance Analysis and Simulation

TByle mmmm 4 Byles m== 16Bytes —— 64 Byles
2 Bytes oo 8 Bytes m= 32 Bytes mmmm

100
e
< 80
[
N 60
w
©
& 40
c L 1
g 20
;:5 0

Z 2z 2z 2 3 3 3 3
= 3 3 - @ X X [[
o o [o o I°% L B 3
£ T T 2 2 o ® ® ®
0] o s a a S = = =2
= [= sl s 2 = % §

o T o = o © © =

% 7 a ®

Figure 4: Memory Reference Size

access during these operations. In the interest of space, we present
results averaged across the suites in Figure 4. There is a broad range
of data size granularities accessed by instructions, from 1 Byte to
64 Bytes, with the latter being the cacheline size as well. However,
two important figures stand out. First, the majority of the accesses
(64%) are for an exact 8 Byte granularity. Second, 99.5% of accesses
(reads and writes) are for 8 Bytes or smaller access granularities.
The number of accesses to larger data granularities is extremely
small, and holds true across the suite. This indicates limited spatial
data locality at the individual instruction level.

5.2 Working Set Sizes

The working set size of an application and its sensitivity to cache ca-
pacity can be inferred by examining changes in cache performance
of a system with its cache size. For each benchmark, we conduct a
cache sensitivity analysis to obtain their working set size. Follow-
ing the methodology from [16], we modeled a single, shared cache
with 64Byte line size and LRU replacement policy, which varied
as follows: direct mapped 32KB, 2-way 64KB, 4-way 128KB, 8-way
256KB, and so on till a 1024-way 32MB cache. The experiments
are conducted using dcache, a functional cache simulator Pintool.
Due to dynamic instruction counts in orders of 100 trillion and an
effective slowdown incurred by simulation on dcache, benchmarks
belonging to the FPSpeed suite couldn’t be completed and hence
are deprecated from the working set size analysis. We consider only
one input set for each benchmark.

Our results for cache sensitivity analysis are presented in Figure 5.
We plot cache size in megabytes (MB) on x-axis and misses per
kilo instructions (MPKI) on the y-axis. We observe that not all
workloads perform well within the range of cache sizes. Based on
the working set sizes, we divide the workloads into two groups.
The first group consists of applications like povray, imagick, nab,
and perlbench, which have a limited need for the cache capacity,
and can be well executed without the need to regularly refer the
main memory. On the other hand, applications like cactuBSSN, Ibm,
and mcf fail to accommodate their working set within the range of
cache sizes. The large working sets are often the consequence of
the program’s algorithm that operates on a large amount of data.
For example, cactuBSSN executes a computational model to employ
finite differencing in space using the Einstein equations, while lbm
simulates an incompressible fluid in 3D. With working set sizes
larger than the cache capacity, these applications refer the off-chip
memory and hence affect the bandwidth.

289

ICPE *19, April 7-11, 2019, Mumbai, India

Figure 5 reveals that most workloads exhibit a smooth exponen-
tial decrease in MPKI as the cache size increases. However, the
suite comprises of some workloads where incrementally increasing
cache size gives no significant improvements in cache performance,
until a point of saturation is reached. At this step, a sudden drop
in the MPKI is observed. Such behavior is evident in applications
like bwaves and Ibm, and signifies the working set of the workload.
At this point, the cache size has become large enough to hold the
highly accessed data. Benchmarks like xalancbmk, nab, fotonik3d,
and Ibm illustrate multiple such points, implying that they have
multiple phases with varying working set sizes. Most workloads
suffer from cache misses even with a reasonable 32MB cache size,
implying that memory hierarchy research, for both on-chip and
off-chip components will remain important for these workloads.

5.3 Memory Footprint

SPEC CPU2006 had a target memory footprint of 900MB for the
benchmarks [11, 15]. Since then, the memory size has tremendously
increased. We observe the Resident Set Size (RSS), the amount of
memory allocated to a process in the main memory, sampled every
second, using the Linux ps utility. RSS does not include swapped out
memory. However, it does include memory from shared libraries
as long as the pages from those libraries are actually in memory. A
large RSS on an active system means that the process touches a lot
of memory locations.

Figure 6 plots the average and peak main memory consump-
tion across the execution in MBs, and indicate that all of the Rate
benchmarks, both integer and floating point, still have main mem-
ory consumption well below 900MB. However, Speed workloads
have large RSS, with peak consumption as high as 16 GB. On aver-
age, Speed benchmarks have ~10x larger memory footprint than
their corresponding Rate ones. Floating point benchmark suite have
memory consumption of ~3x more than the integer suite. Based
on the average footprint throughout the execution, we order the
benchmarks from low to high memory consumption. Benchmarks
exchange2, povray, leela, namd, wrf, nab, and xalancbmk have low
RSS values, which indicates negligible access to the main memory.
Therefore, these benchmarks are expected to have low working set
sizes, which is also reflected in the cache sensitivity analysis re-
ported in Section 5.2. On the contrary, bwaves_s, roms_s, fotonik3d_s,
cactuBSSN_s and xz_s exhibit extremely large memory footprints.
Furthermore, we observe that ~90% of the workloads have main
memory consumption below 5 GB, resulting in an average memory
footprint of 1.82 GB.

5.4 Memory Bandwidth

Next, we measure the off-chip bandwidth across the SPEC CPU2017
workloads. We collect the hardware events LLC-load-misses and
LLC-store-misses using perf at regular intervals of 1 second, on test
system described in Table 2. Memory bandwidth is calculated as the
product of the total LLC misses per second with the cache line size.
Figure 7 plots the average and peak memory bandwidth results in
Megabytes per second, for each workload.

Our experimental results indicate a large variety in memory
bandwidth usage patterns from various benchmarks. CPU2017 con-
sists of workloads with average bandwidth as low as 0.2 MB/s to

Session 11: Performance Analysis and Simulation

MPKI

ICPE *19, April 7-11, 2019, Mumbai, India

MPKI

MPKI

MPKI

MPKI

14 40 9
502.gcc_r.gec-pp.opts-03 —— 25 505.mcf_r 8 520.0mnetpp_r
12 602.gcc_s.gec-pp.opts-O5_fipa-pta 20 605.mcf_s 7 620.0mnetpp_s
10
— 25 _ 6
8 X 5 25
6 o [t
s 15 =3
4 10 >
2 5 1
0 0 0
gesxy -~ voey gesxy v oey geery - vvoey
Cache Size (MB) Cache Size (MB) Cache Size (MB)
(b) gee (c) mcef (d) omnetpp
35 45 - .
525.x264_r.run_000-1000_pass1 4 531.deepsjeng_r 5411eéla_r
625.x264_s.run_000-1000_pass1 35 631.deepsjeng_s g 641.leela_s
0.6
¥ 05
L o4
= o3
0.2
- 0.1
0
gesxy -V oegy gesxy -V oegy Ty~ ~vveegy
Cache Size (MB) Cache Size (MB) Cache Size (MB)
(f) x264 (g) deepsjeng (h) leela
12 12 35
557 xz_r.cld tar-160-6 —— 503.bwaves_r.bwaves_1 —— 507.cactuBSSN_r
10 657.xz_s.cpu2006docs tar-6643-4 —— 10 30
8 8 25
< < 20
6 g 6 g
4 = =
2 2
0 0
gesxy v oey gesxy v oey ggIy Vo ey
Cache Size (MB) Cache Size (MB) Cache Size (MB)
(j) xz (k) bwaves (1) cactuBSSN
10 12
9 510.parest_r 511.povray_r 519.1bm_r
3 10
7
H c - 2
5 o 6 o
4 = = 6
3
2 4
2
1 2
0 0 0
gesxy v oey gessy v oey gegry-rvoey
Cache Size (MB) Cache Size (MB) Cache Size (MB)
(n) parest (o) povray (p) Ibm
45 9
4 526.blender_r 8 507.camé_r 538.imagick_r
35 7
3 6
25 ¥ 5 ~
2 [o 1
15 =3 =
1 2
0.5 1)
0 0 0
gesxy -V oey geexy -~ v e ey yeegxy ooy

Cache Size (MB)

Cache Size (MB)

Cache Size (MB)

8
7 500.perlbench_r.checkspam ——
8 600.perlbench_s.checkspam ——
< 5
o 4
= 3
2
1
0
LIy~ N v 0p
€T = = =
Cache Size (MB)
(a) perlbench
8
7 523.xalancbmk_r
8 623.xalancbmk_s
< 5
o 4
= 3
2
1
0
geery - vy ey
Cache Size (MB)
(e) xalancbmk
6
548.exchange2_r
5 648.exchange2_s
4
4
o 3
)
1
0
geexy - vveey
Cache Size (MB)
(i) exchange2
9
8 508.namd_r
7
6
E 5
23
2
1
0
geery - vvoeey
Cache Size (MB)
(m) namd
9
8 521.wrf r
7
6
E 5
23
2
1
0
geexy - vveey
Cache Size (MB)
(@ wrf
9
8 544.nab_r
7
6
E 5
23
2
1
0
geeIy - vvoey

Cache Size (MB)

(u) nab

Cache Size (MB)

(v) fotonik3d

Figure 5: Working Set Size

(r) blender (s) cam4

8
7 549 fotonik3d_r
6

< 5

£ 4

= 3
2
1
0
geeExy "V ey

MPKI

(t) imagick
13 554.roms_r
8
7
6
5
4
3
2
1
0
yeeye s

Cache Size (MB)

(w) roms

workloads with peak bandwidth of 2.3 GB/s. leela, exchange2, namd,
povray, and nab_r have modest bandwidth usage, with consump-
tion within 10 MB/s during the entire execution period. Workloads
parest, wrf_r, nab_s and perlbench.diffmail exhibit low bandwidth
usage with short sudden irregular bursts of high data transfer rates.

While applications like xalancbmk and imagick have input sets
which fit within on-chip memory, and hence these applications do
not refer the off-chip memory after initiation. All the above dis-
cussed benchmarks have very little off-chip bandwidth usage. This
is in line with the conclusions drawn from Sections 5.2 and 5.3, as

Session 11: Performance Analysis and Simulation

ICPE *19, April 7-11, 2019, Mumbai, India

[Average mmmmm

Peak —%—

100000

10000
1000
100

=
- o

————
D —
=

Memory Consumption (MB, log scale)
©

YOEX GO |

(22, 04 w L] WL DD DD [~ N=] [« N~} [=2 =) (3,4 %)) [, %,4,] o DO O [=2] ==
COONNNNMNASWLWINU==2ONNN OOONNNOOWUIINU=S=2®NN WOWENPO OO NDA0R WONO=00 R0 R Ea;umc
TTUTQQQQQ3oOXXXXaAg o Tooaaa Xx X Xxage TooTUQoUReEFsETQS288 TOQ5s052383 o
38888888258 R mm%xﬁﬁﬁ 282888258 R mm%xﬁﬁ Essgmmmcg o =2829 EEN%EGE g S ﬁg%gg
SaSoonno QS gooon 2ol |1 253000832 godon 20l | SE3323g=2"332 g3 E§s3q>3—"0 D g2 T2 =
EEEl L S RRRT R 0D SO, as R RERgre 22222283 arel3> f2xeLlwpCl 3 S8pal

D - 7] j=X =1 o o0 ©C D D —_ - o = @ @ a = b P
S33eaeagg ‘oo JT 2880 23 aaa Svoegwzg g mmmmg‘—\ = LSRN mmg w2 D é}%é"}
oon9a9ass ©3zZges €SE5c 000000 Soz2z23 Q9SS LG T | I a o o @B I a]
SO0 WW | 555a CE NS TTITooo | ccca @ N oo oS = = (LT w o Do 2T
Sohzg el 722200 MTE hhemss 72272, 8% ggggs - oo o Sg6888
232n®®3c8 ~lolgom 28 wewyE3Z3F nlglgla W gL EEEEL =z 8 <
5880002 TS 283 223 5285050 888& 2r 2228 53 “ 8 %
EEEES- 0 °PPg 8T g3ScSS %8 88 3388 55
GEELYZ99 = vy SF37CG aar b&s 20 o i
g =228« == 58 8=8000 Se N 1 =N =
o @ °eg TN B QG g ISESES] 5
3 o oo Rg 3 ol Il @ @

& 29 © S° === 5 o =3
ne T~ 'gl_‘\’\J Ir =
) 4 Lo & 4% Iy
@ 2385 R A
oD oo
(=]

————

Figure 6: Main Memory Consumption, average and peak (in MB). (Clusters from L to R: INTRate, INTSpeed, FPRate, FPSpeed)

[Average

Peak —%— |

—_
@ 10000
[
o 1000
@ e Pad N\
o %
o 100 - E
£ 10
= | E
= 1
£ i E
o 0.1
= BBIILLLBBNIRERALLGFETE S22 ZRIRVVIRRIGES LE83BJALAPPRLLLE SBB2IJRZERG Z=3FFQ
o OCOOPRNRRNRASWANIN=2BNNN COORNRASWANA=~0NN QXX NDOOSING,0L SENO2Ddo,ORr JAznc
TOoOTOQOaQg O X X X X OF® ToTooTQua O X X X x OF O ToTooTQ 0T F ocos5>383 TTOF o583 b=l
% mmmﬂnnﬂﬂgggwwmmgxmﬁﬁ mmmﬂnnagammmm‘r‘sxﬁﬁ Esésmmmcggamamgg EENEEQEWQD gg%$§
Sas00no0a0 0350028 11, ZoizoonlSFgoooo 2al | S33823g3<2"332082 3538302082 TR =
[21] ggg_l___l_|_mzlala‘aglmghh;. ggglmlm\m\wm:.‘a-‘alag‘ma’ynsn <<<<=Qmm|_—ﬂ.bg“_‘2.lm <<=‘w"‘|wg“m2-|m]
> $5facazy 857782883 2232cea Bovewge38s BREBTCE a2 a- 82 w28 £»3 22
S 252388853 P3IEES2 ©3ms 8382823 P3zg22 S5 LILLL@ 7= ! | a ol 8 | =% i
ool | S S S@ 151 Ing ST o0 00 [} ccc@og N oo oo - il | n n w | i I]
£ CCZgssnann =733 3] SRS TSy w555 NB8 Togoz - L= b c3983
"o -"8B8 300 Llolgle= 148 wwwE33Z 1" 2T 222 2| Rl o8 Pag
[} S28c00DTT Soq 283 9285506 288 2R sosa” 58 Y e Po
= EEES-R-S- 2" =] P88 2888 [=X=R=] 58 588543 53
28399300 233 °83 2F5¢¢¢ 2o Be S@@@ & &
£=80080% 331 g2 G2B500 2283 =@ Lhole's 2o
=W ISE=R3] =0 b= = o
5] b =) TN B o0 ecga =
3 5 h-R-] Rg 3 et e = =)
o] T = = = 5 5 2]
@ w o0 P~ =N a8 A
@ o & B2 %8 @
© 288 =N S
oD oo
=
Figure 7: Memory Bandwidth, average and peak (in MB/s). (Clusters from L to R: INTRate, INTSpeed, FPRate, FPSpeed)

these workloads have low working set sizes and hence low memory
footprint.

CPU2017 also comprises of many benchmarks with large mem-
ory bandwidth utilizations. For example, cactuBSSN_s, and lbm_s
have peak bandwidth utilization of 2.3 GB/s (0.9 GB/s on average).
Similarly, mcf, xz_s, cactuBSSN_r, and fotonik3d_s have also large
off-chip traffic, and can be used to test bandwidth optimization
techniques.

6 NEW ADDITIONS TO SPEC CPU

In the current iteration of SPEC CPU, many new benchmarks have
been added to cover emerging application domains. In the INT cate-
gory, artificial intelligence (AI) has been extensively represented by
a total of three benchmarks, with exchange2 being the new addition
to the group. CPU2006 [14] integer benchmarks h264ref, sjeng and
gobmk have been renamed to x264, deepsjeng and leela respectively
due to changes in their functionality or inputs, while still maintain-
ing the application domain. Additionally, bzip2 has been replaced
by xz to represent the general compression domain. exchange2 (re-
cursive solution generator), the new addition to INT suite, has the

291

lowest percentage of memory instructions and hence, justifiably
the lowest memory footprint and lowest bandwidth consumption
in the CPU2017 suite. Interestingly, all the three AI benchmarks in
the suite have extremely small working set sizes and consequently,
low off-chip accesses.

In the FP category, eight new benchmarks have been added:
parest, blender, cam4, pop2, imagick, nab, fotonik3d, and roms. Cli-
matology domain has been extensively represented here with three
new additions of benchmarks, simulating different components of
the NCAR Earth System. cactusADM has been changed to cac-
tuBSSN. parest’s implementation relies on dealll libraries from
CPU2006, which also underlines the dealll benchmark. In gen-
eral, Speed versions of these benchmarks are scaled up in order
to highly exercise both memory and computation. For example,
xz achieves this by differing in its data compression levels, roms
vary its grid size and simulation time steps, while fotonik3d alters
its problem size, frequencies, time steps, and boundary conditions.
At the same time, benchmarks x264, leela and exchange2 use al-
most similar workloads for both Rate and Speed and hence, we
discern very similar instruction and memory behavior from them,
as depicted throughout the Sections 4 and 5.

Session 11: Performance Analysis and Simulation

7 RELATED WORK

A number of studies have been carried out recently regarding char-
acterization of SPEC CPU2017 workloads, however, to the best of
our knowledge, this paper presents the first systematic study of the
memory behavior of the SPEC CPU2017 suite.

SPEC CPU2017 Characterization: Bucek et al. [8] present an overview

of CPU2017 suite and discuss its reportable execution. Limaye and
Adegbija [21] use hardware performance counter statistics to char-
acterize SPEC CPU2017 applications with respect to several metrics
such as instruction distribution, execution performance, branch
and cache behaviors. They also utilize Principal Components Anal-
ysis [10] and hierarchical clustering to identify subsets of the suite.
Similarly, Panda et al. [24] characterize the CPU2017 benchmarks
using perf, and leverage statistical techniques to identify cross ap-
plication redundancies and propose subsets of the entire suite, by
classifying multiple benchmarks with similar behaviors into a sin-
gle subset. Further, they also provide a detailed evaluation of the
representativeness of the subsets. Amaral et al. [5] propose the
Alberta Workloads for the SPEC CPU2017 benchmark suite hoping
to improve the performance evaluation of techniques that rely on
any type of learning, for example the formal Feedback-Directed
Optimization (FDO). Additionally, in order to ameliorate large sim-
ulation times, Wu et al. [26] analyze the program behavior and
consequently propose simulation points [12] for the suite.

Memory Characterization of Workloads: Jaleel [16] determined the
memory system requirements of workloads from SPEC CPU2000
and CPU2006 using binary instrumentation. Henning [15] discussed
the memory footprints of CPU2006 workloads, while Gove [11]
analysed their working set sizes. Bienia et al. [7] present memory
behavior of PARSEC benchmark suite. John et al. [18] discusses a
taxonomy of workload characterization techniques.

8 CONCLUSION

In this paper, we provide the first, comprehensive characteriza-
tion of the memory behavior of the SPEC CPU2017 benchmark
suite. Our working set analysis shows that many workloads have
a working set much higher than 32 MB (maximum cache size as-
sumed in our experiments), implying the continued importance of
cache hierarchies for benchmark performance. We also show that
Rate benchmarks, both INT and FP, still have main memory con-
sumption well below 900 MB, which was target memory footprint
for CPU2006. Almost 90% of the workloads have main memory
consumption below 5 GB, with the average across the suite being
1.82 GB. However, workloads have extremely varying peak memory
bandwidth usage, with some benchmarks requiring as little as 0.2
MBY/s, to others utilizing upto 2.3 GB/s.

In addition, our experiments have revealed some interesting
results with respect to dynamic instruction counts and distributions.
The average instruction count for SPEC CPU2017 workloads is
22.19 trillion, which is an order of magnitude higher than the SPEC
CPU2006. In addition, we find that FP benchmarks typically have
much higher compute requirements: on average, FP workloads carry
out three times the number of arithmetic operations as compared
to INT workloads.

292

ICPE *19, April 7-11, 2019, Mumbai, India

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers and shepherd for their
useful comments and feedback. This work was supported in part
by SERB grant (ECR/2017/000887), as well as Indian Institute of
Technology Gandhinagar and Ashoka University, Sonipat.

REFERENCES

[1] [n. d.]. PS man-page. http://man7.org/linux/man-pages/man1/ps.1.html.

[2] [n.d.]. SPEC CPU2017 Base Compilation Flags. https://www.spec.org/cpu2017/
Docs/runrules.html#rule_2.3.

[n. d.]. SPEC CPU2017 Documentation. https://www.spec.org/cpu2017/Docs.
Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-enabled
instructions: a low-overhead, locality-aware processing-in-memory architec-
ture. In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International
Symposium on. IEEE, 336-348.

[5] J.N.Amaral et al. 2018. The Alberta Workloads for the SPEC CPU 2017 Benchmark
Suite. In Proceedings of ISPASS.

Manu Awasthi et al. 2012. Managing data placement in memory systems with
multiple memory controllers. International Journal of Parallel Programming 40, 1
(2012).

[7] Christian Bienia et al. 2008. The PARSEC benchmark suite: Characterization and
architectural implications. In Proceedings of PACT.

James Bucek, Klaus-Dieter Lange, et al. 2018. SPEC CPU2017: Next-Generation
Compute Benchmark. In Companion of the 2018 ACM/SPEC International Confer-
ence on Performance Engineering. ACM, 41-42.

Arnaldo Carvalho De Melo. 2010. The new linux perf tools. In Slides from Linux
Kongress, Vol. 18.

George H Dunteman. 1989. Principal components analysis. Number 69. Sage.
Darryl Gove. 2007. CPU2006 working set size. ACM SIGARCH Computer Archi-
tecture News 35, 1 (2007), 90-96.

Greg Hamerly, Erez Perelman, and Brad Calder. 2004. How to use simpoint to
pick simulation points. ACM SIGMETRICS Performance Evaluation Review 31, 4
(2004), 25-30.

Hasan Hassan et al. 2016. ChargeCache: Reducing DRAM latency by exploiting
row access locality. In Proceedings of HPCA.

John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Comput. Archit. News 34, 4 (2006).

John L. Henning. 2007. SPEC CPU2006 Memory Footprint. SSGARCH Comput.
Archit. News 35, 1 (March 2007), 84-89. https://doi.org/10.1145/1241601.1241618
Aamer Jaleel. 2010. Memory characterization of workloads using instrumentation-
driven simulation. Web Copy: http://www. glue. umd. edu/ajaleel/workload (2010).
Youngbin Jin, Mustafa Shihab, and Myoungsoo Jung. 2014. Area, power, and
latency considerations of STT-MRAM to substitute for main memory. In Proc.
ISCA.

Lizy Kurian John, Purnima Vasudevan, and Jyotsna Sabarinathan. 1999. Workload
characterization: Motivation, goals and methodology. In Workload Characteri-
zation: Methodology and Case Studies. Based on the First Workshop on Workload
Characterization. IEEE, 3-14.

Emre Kiltiirsay et al. 2013. Evaluating STT-RAM as an energy-efficient main
memory alternative. In Proceedings of ISPASS.

Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
phase change memory as a scalable dram alternative. In ACM SIGARCH Computer
Architecture News, Vol. 37. ACM, 2-13.

A. Limaye and T. Adegbija. 2018. A Workload Characterization of the SPEC
CPU2017 Benchmark Suite. In Proceedings of ISPASS).

Jamie Liu et al. 2012. RAIDR: Retention-aware intelligent DRAM refresh. In ACM
SIGARCH Computer Architecture News, Vol. 40.

Chi-Keung Luk et al. 2005. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. SIGPLAN Not. 40, 6 (June 2005).

R. Panda et al. 2018. Wait of a Decade: Did SPEC CPU 2017 Broaden the Perfor-
mance Horizon?. In Proceedings of HPCA.

Aniruddha N. Udipi et al. 2010. Rethinking DRAM Design and Organization for
Energy-constrained Multi-cores. In Proceedings of ISCA.

Qinzhe Wu et al. 2018. Hot Regions in SPEC CPU2017. (2018).

Xiaoxia Wu et al. 2009. Hybrid cache architecture with disparate memory tech-
nologies. In ACM SIGARCH computer architecture news, Vol. 37.

Wangyuan Zhang and Tao Li. 2009. Exploring phase change memory and 3D
die-stacking for power/thermal friendly, fast and durable memory architectures.
In Proceedings of PACT.

3
[4]

[6]

=
&

=
&

=
2

&
=

http://man7.org/linux/man-pages/man1/ps.1.html
https://www.spec.org/cpu2017/Docs/runrules.html#rule_2.3
https://www.spec.org/cpu2017/Docs/runrules.html#rule_2.3
https://www.spec.org/cpu2017/Docs
https://doi.org/10.1145/1241601.1241618

	Abstract
	1 Introduction
	2 SPEC CPU2017
	3 Methodology
	4 Instruction Profile
	5 Memory Behavior
	5.1 Spatial Locality Behavior
	5.2 Working Set Sizes
	5.3 Memory Footprint
	5.4 Memory Bandwidth

	6 New Additions to SPEC CPU
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

